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We propose a density-functional theory for inhomogeneous polyatomic fluids with complex architecture by
introducing a different representation for the polymers. This representation gives an efficient hierarchical
algorithm to calculate the direct bonding connectivity integral for polymers with complex architecture, such as
linear, star, branched, and dendritic structures. A comparison with the available simulated data for linear and
star polymers confirms the accuracy of the present theory in reproducing the density profiles of the two types
of polymer in the slits. By using the proposed algorithm, we also explore partitioning coefficients of polymers
of different architectures in a slit, and find that the partitioning coefficients of branched, star, and dendrimer
forms of 22-mers decrease to a minimum at extremely low packing fraction, and then increase monotonically
with packing fraction. Moreover, it is found that it is more difficult for a linear polymer of 22-mers to enter the
slit than for branched, star, and dendritic polymers. In addition, we also investigate the self-assembly of diblock
copolymers with different tails in a slit. It is found that the linear copolymer self-assembles into a trilayer film
structure, while copolymers with branched and dendritic tails self-assemble into a five-layer film structure.
Interestingly, the copolymer with a star tail self-assembles into a trilayer film structure, and then the trilayer
structure evolves into a five-layer structure with increase of the bulk packing fraction in the case studied.
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I. INTRODUCTION

Density-functional theory �DFT� of polyatomic fluids,
pioneered by Chandler, McCoy, and Singer �1� �CMS�, has
been proved to be a versatile and powerful tool to investigate
the microstructure and thermodynamic properties of poly-
mers under a variety of situations. The original theory of
CMS is a generalization of monatomic DFT to polyatomic
fluids, in which all intramolecular correlations were included
in the ideal free energy and the intermolecular interactions in
the excess part. In the CMS DFT the free energy is expressed
as a functional of the single-site densities, not as a functional
of the polymeric molecular distribution. Kierlik and Rosin-
berg �2� reported a perturbation-based DFT in which the
ideal free energy is expressed as a functional of the full mo-
lecular density distribution, and the excess contribution is
calculated perturbationally over a reference fluid of mono-
mers at the same temperature and density. Qualitative agree-
ment with simulated data was found for short chains at high
densities, but the theory failed for long chains and low den-
sities because of the neglect of the intramolecular excluded
volume effect. Woodward and Yethiraj �3� improved the
functional by adopting the generalized Flory-Dimer �GFD�
equation of state �EOS�, which has been shown to be very
accurate in comparison with simulated results. The GFD
equation supersedes the original generalized Flory theory by
using an empirical EOS for dimers to estimate the probabil-
ity of inserting bonded pair monomers �4�.

By considering the intramolecular excluded volume effect
and the relationship between the weighted functions and the
geometrical properties of a sphere, Rosenfeld �5� developed
a well-known weighted DFT for hard-sphere fluids, i.e., fun-

damental measure theory �FMT�. It was first proposed for
single-site hard spheres, and was later introduced to poly-
meric DFTs by incorporating a bonding contribution to the
free energy. Although the FMT met with considerable suc-
cess, it is slightly inaccurate in predicting coexisting fluids
and overestimates the pressure of pure hard-sphere fluids at
densities approaching bulk freezing �6�. The reason for these
inaccuracies may be that the underlying EOS of bulk fluids
in FMT is from the Percus-Yevick �PY� equation. Therefore,
Roth et al. �6� and Yu et al. �7� modified the FMT theory
separately by using the empirical Mansoori-Carnahan-
Starling-Leland EOS to replace the PY EOS �8�. The modi-
fied FMT- �MFMT-�based DFT �6,7�, has been successfully
applied to investigating adsorption and surface phase transi-
tions �9–11�, the microstructure of flexible polymer fluids
�12–14�, surface forces between polymer brushes �15,16�,
and osmotic pressure of caged DNA in the bulk �17�. More-
over, it was also extended to investigations of inhomoge-
neous semiflexible and cyclic polyatomic fluids �18�, grafted
polyelectrolytes �19�, and rodlike molecules �20,21�. All
these calculations suggest that the MFMT-based DFT can
excellently reproduce the microstructure and thermodynamic
properties of polymeric fluids. However, the MFMT-based
DFT has difficulty in predicting the thermodynamic proper-
ties of polymers with complex architecture because of the
direct bonding integral of the complex architecture. By treat-
ing the ideal free energy exactly via a single-chain simula-
tion, single-chain Monte Carlo �SCMC� simulation �22–25�
allows us to investigate polymer models that have quite com-
plex intramolecular interaction, such as dendrimers �26�.
However, it is not in a self-consistent framework from the
theoretical point of view.

In this work, we introduce a different representation for
polymers and present a universal version of DFT for systems
containing polyatomic molecules with complex architec-
tures, such as linear, branched, star, or dendritic structures.
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II. MODELING, THEORY, AND ALGORITHM

A. Modeling

A coarse-grained model is used to represent the polymers
with complex architecture, where the bonding length be-
tween two neighboring segments is fixed as the segmental
diameter � and the bonding angle is fully flexible. We use
the tree-type structure in graph theory to represent a polymer.
As shown in Fig. 1, all the polymers with different architec-
tures �including linear, branched, star, and dendritic struc-
tures� can be modeled by a tree-type structure. In the model,
we must first assign a segment �no special requirement on
this segment� as the root. Then, a polymer can be considered
exactly as a tree-type structure. The part connected to the
root is defined as a subtree, where the connected segment is
identified as the root of the subtree. The root of the subtree is
called a child of the root segment, and the root segment is
accordingly called the parent of the child. For example, the
dashed line in Fig. 1�c� is a subtree of segment A. The con-
nected segment B is the root of the subtree. Segment B is a
child of segment A, and segment A therefore is the parent of
segment B. A segment is a leaf if there is no child for this
segment. For example, all segments e, f , g, h, j are leaves of
the tree in Fig. 2�a1�. A segment is at level L if the parent-
child relation transfers L times between this segment and the
root. For instance, the level of segment A in Fig. 1�c� is 1, as
segment A is a child of the root. The parent-child relation
transfers twice between segment B and the root, as B is a
child of A and A is a child of the root. Therefore, the level for
segment B is 2. For consistency, we define the level of the
root as zero. For a polymer containing N segments, we use
unique integer series from 1 to N to distinguish and index

each segment. There is no special requirement on this
index.

B. Density-functional theory

Let us recall the framework of density-functional theory
briefly before presenting the universal version for polymers
with complex architecture. For a polymeric fluid, the grand
potential is related to the Helmholtz energy functional via
Legendre transformation

���M�R�� = F��M�R�� +� dR �M�R���M�R� − �M� , �1�

where �M�R� is a multidimensional density profile, and R is
a composite vector �r1 ,r2 , . . . ,rN� representing the positions
of all segments of the polymeric molecule. �M�R� is the sum
of the external potentials exerted on each individual segment,
and �M is the chemical potential of the polymer chain. The
molecular density profile �M�R� is related to the segmental
densities by

�s�r� = �
i=1

N

�si�r� = �
i=1

N � dR ��r − ri��M�R� , �2�

FIG. 1. �Color online� Representation of polymers with complex
architecture by tree-type structures: �a� linear, �b� branched, �c� G3
dendrimer, and �d� star polymer.

FIG. 2. �Color online� �a� Schematic diagrams for computing
the segmental density �si, using a dendritic polymer as an example.
�a1� Dendritic polymer. �a2� Flowchart for computing �si. �b� The
two traverses in calculating recursive functions according to Eqs.
�6� and �7�. �b1� Searching over parents to calculate all child-
recursive functions Gi

C	�z� �	=child�i��. The calculations were car-
ried out from every leaf to the root level by level, which means that
we must calculate all the bonding connectivities at maximum level
L first, and then calculate these at levels L−1, L−2, . . ., up to level
1. �b2� Searching over children to calculate all parent-recursive
functions Gi

P�z�. The calculations were carried out from the root to
every leaf level by level.
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where �s�r� is the total segmental density and �si�r� is the
local density of segment i. The Helmholtz energy functional
F��M�R�� is conventionally expressed as an ideal contribu-
tion from a system of ideal chains that interact only through
bonding potentials and an excess part taking into account the
contributions from nonbonded chain connectivity interaction
and the hard-sphere repulsion effect. Following our previous
work for polymers �14,19�, the hard-sphere part of the excess
Helmholtz energy functional is represented by a modified
fundamental measure theory, and the excess Helmholtz en-
ergy functional due to the chain connectivity is given by a
generalized first-order thermodynamics perturbation theory
�TPT1� �7�.

Minimization of the grand potential with respect to the
density profiles yields the Euler-Lagrange equations

�M�R� = exp�
�M − 
VB�R� − 
�
i=1

N

�i�ri�� , �3�

where the self-consistent potential �i�ri� is a summation of
the derivatives of the excess Helmholtz energy with respect
to the density profiles and the external potential, i.e., �i�ri�
= äFex / ä�s�ri�+�i�ri�. The direct bonding potential VB�R�
satisfies

exp�− 
VB�R�� = 	
i↔j

i
j

��
ri − r j
 − ��
4��2 , �4�

where i↔ j stands for the bond connecting segment i and j.
Combining Eqs. �2� and �3�, we can get the segmental den-
sity of a polymer,

�s�r� =� dR�
i=1

N

��r − ri�exp�
�M − 
VB�R� − 
�
j=1

N

� j�r j�� .

�5�

For polymers with complex architecture, like star,
branched, and dendritic polymers, the key issue in solving
Eq. �5� is how to simplify the complex integral of the direct

bonding connectivity �VB�R��. By treating the ideal free en-
ergy exactly via a single-chain simulation, a hybrid method
combining DFT and single-chain simulation �22–25� allows
us to investigate polymer models that have quite complex
intramolecular interaction, such as dendrimers �26�. From a
theoretical point of view, this hybrid method is not in a self-
consistent theoretical framework, as mentioned earlier. In
this work, by introducing the polymeric representation as a
tree-type structure, we develop an efficient method to solve
the integral of Eq. �5�, and the DFT approach for polymers
with different architectures �including linear, star, branched,
and dendritic architectures� can be expressed universally.

C. Algorithm

In the present method, the key point is that we can find
one and only one path from the root to the segment of inter-
est, or from the segment of interest to the root. This leads to
a clear way to calculate the direct bonding connectivity of a
complex architecture. For example, in the calculation of the
local density of segment i in Fig. 2�a�, the contribution of the
direct bonding connectivity to the grand potential from every
other segment can be accumulated by a traverse from every
leaf to i. The traverse is root→k→ i and from every leaf
�segments e , f ,g ,h , j� to i. In the parent-child relation, the
traverse is comprised of the sought child �such as root→k
and k→ i� and sought parent �such as f → l and m→ i�. In
every child or parent obtained, we need to calculate the ac-
cumulated weight �Gi

P, Gi
C	 as shown in Fig. 2�a2�� due to

the direct bonding connectivity. The principle of mathemati-
cal derivation is the same as this idea above, because the
integral in Eq. �5� can be accumulated by this travel.

Next, we present the DFT for polymers with complex
architecture in detail. Equations �1�–�5� can therefore lead to
the following expression for the segmental density profiles:

�si�r� = exp�
�M − 
�i�r��Gi
P�r� 	

á=child�i�
Gi

C	�r�, 1 � i � N .

�6�

The parent-recursive function Gi
P�r� is given by

Gi
P�r�

�parent�i�=k�
= �

1, i is root,

1

4��2�

r�−r
=�

exp�− 
�k�r���Gk
P�r�� 	

á=child�k�

á�i

Gk
C	�r��dr�,

i is not root.� �7�

The child-recursive function Gi
C	�z� �	=child�i�� is given by

Gi
C	

�	=child�i��
�r� = � 1

4��2�

r�−r
=�

exp�− 
�	�r��� 	

=child�	�

G	
C
�r��dr�, i is not a leaf,

1, i is a leaf.
� �8�
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We use the symbols “parent�i�” and “child�i�” to represent
the parent and child segments of the segment i, respectively.
In the calculation of every segmental density �si, it is not
necessary to calculate Eqs. �7� and �8� every time, but all
Gi

P�r� and Gi
C	�r� �	=child�i��, i=1,2 , . . . ,N, can be ob-

tained two traverses described below.
�a� Searching over parents to calculate all child-recursive

functions Gi
C	�r� �	=child�i�� �see Fig. 2�b1��. The calcula-

tions were carried out from every leaf to the root level by
level, which means that we must calculate all the bonding
connectivities at maximum level L first, and then calculate
these at levels L−1, L−2, . . ., up to level 1. This special
order is determined via Eq. �8�, because the calculations at
low levels need the results of higher levels as input. For
example, in Fig. 2�a� the maximum level is four, and the
calculation procedures are as follows.

�1� Calculate all bonding integrals at level four, i.e., f
→ l �Gl

Cf�, e→ l �Gl
Ce�, g→m �Gm

Cg�, h→m �Gm
Ch�.

�2� Use Gl
Cf, Gl

Ce, Gm
Cg, and Gm

Ch to calculate all bonding
integrals at level three, i.e., l→ i �Gi

Cl�, m→ i �Gi
Cm�.

�3� Use Gi
Cl and Gi

Cm to calculate all bonding integrals at
level two, i.e., i→k �Gk

Ci�, j→k �Gk
Cj�.

�4� Use Gk
Ci and Gk

Cj to calculate all bonding integrals at
level one, i.e., k→ the root �Groot

Ck �.
�b� Search over children to calculate all parent-recursive

functions Gi
P�r� �see Fig. 2�b2��. The calculations were car-

ried out from the root to every leaf level by level, which is
the reverse of the traverse above. That is to say, we must
calculate all the bonding connectivity integrals at level 1
first, and then calculate these at levels 2, 3, …, up to level L.
Therefore, the calculation procedures are as below.

�1� Calculate all bonding integrals at level one, i.e., the
root→k �Gk

F�.
�2� Use Gk

F to calculate all bonding integrals at level two,
i.e., k→ i �Gi

F�, k→ j �Gj
F�.

�3� Use Gi
F and Gj

F to calculate all bonding integrals at
level three, i.e., i→ l �Gl

F�, i→m �Gm
F �.

�4� Use Gl
F and Gm

F to calculate all bonding integrals at
level four, i.e., l→ f �Gf

F�, l→e �Ge
F�, m→g �Gg

F�, m→h
�Gh

F�.
It should be pointed out that Eq. �7� contains these items

of Gi
C	�r� �	=child�i��, which means that we must first cal-

culate the child-recursive functions �a� and then the parent
functions �b�. By incorporating a bending potential into the
bonding potential �18�, this algorithm can also be extended
to the DFT of semiflexible and rigid polyatomic fluids. Given
that the bonding potential satisfies Eq. �4�, this hierarchical
algorithm is applicable not only to TPT1-based DFT, but also
to TPT2-based DFT, GFD-based DFT, and many other ver-
sions of DFT. The difference between these versions of DFT
is that they give different approximations of the excess free
energy, and thus have no influence on the hierarchical algo-
rithm. The TPT1 approach takes into account only the num-
ber of segmental connections and neglects the topology of
polymers, which is included within the TPT2 approach.
Therefore, in describing star or branched polymers, it would
be more accurate to use TPT2 than TPT1. However, in order
to illustrate our algorithm, we used the simple TPT1 ap-
proach in this work.

In other algorithms �6,7,27–29� where the segmental den-
sity was directly computed according to Eq. �6�, the recur-
sive functions for the polymers with complex architecture
may be computed repeatedly. Figure 3 compares our algo-
rithm with previous ones. In Fig. 3�a1�, to calculate the seg-
mental density of A, the recursive propagators from every
leaf to segment A must be computed. These propagators may
be repeatedly computed in getting another segmental density,
for instance, of segment B �Fig. 3�a2��. As is shown in Figs.
3�a1� and 3�a2�, the propagators inside the dashed circles are
repeatedly computed. To obtain all the segmental densities,
we must record the propagators related to the articulated seg-
ment �for example, the segments A and B in Fig. 3�a�� in
every calculation. The more articulated segments exist, the
more propagators will be stored. This calculation is therefore
more complicated. However, this problem of repeated com-
putation does not appear in the case of linear chains, because
there is no the articulated segment in a linear chain. On the
contrary, in the case of complex chains, the propagators re-
lated to the articulated segments lead to a complicated com-
putation. Our algorithm overcomes this problem by comput-
ing the propagator functions just on demand, i.e., every
propagator function just needs to be computed one time,
which greatly reduces the amount of calculation of DFT in
the minimum limit. The idea of our algorithm is that we
“fixed” a segment �the root� first, and computed all the child-
recursive propagators �Fig. 3�b1��, and then obtained all the
parent-recursive propagators �Fig. 3�b2��. As illustrated
above, these computations must be performed level by level,
determined by the recursive relations of Eqs. �7� and �8�.

FIG. 3. �Color online� �a� Schematic diagrams for computing
the local densities of segments A and B. The propagator functions
inside the dashed circles are computed repeatedly. �b� Schematic
diagrams for computing the local density using our algorithm in this
work.
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III. RESULTS AND DISCUSSION

To ensure that our approach does lead to a correct predic-
tion, it would be ideal to test the density profiles of polymers
for all architectures by comparison with Monte Carlo simu-
lated data. Unfortunately, only data of linear and star poly-
mers are available as a benchmark to validate this approach.
We calculated the density profiles of linear and star polymers
in a slit and show them in Figs. 4�a� and 4�b�, where we also
inserted the simulated data of Yethiraj and Hall �30� and DFT
results of Malijevsky et al. �27� for comparison. For poly-
meric fluids confined in a slit, the density distribution varies
only in the z direction, i.e., �si�r�=�si�z�, Gi

P�r�=Gi
P�z�, and

Gi
C	�r�=Gi

C	�z� �	=child�i��.
Obviously, for both linear and star polymers at various

packing fractions, all our calculation results are in good
agreement with the MC data and with the DFT results from
Malijevsky et al. �27�. The difference between our results
and the DFT data from Malijevsky et al. occurs only within
the region near the wall at high packing fractions. The con-
tact value of our calculation at �b=0.3 is much closer to the
MC data than the results from Malijevsky et al.. In the DFT
of Malijevsky et al., the segmental density is directly calcu-
lated by Eq. �6�. The disadvantage of this calculation is that
the recursive functions, which are a multiple multiplication
of the other propagators, have to be repeatedly computed.
This repeated calculation of multiple multiplications may
lead to a slight deviation of the numerical solution. As

discussed above, our algorithm avoids this deviation by com-
puting the propagator function just on demand.

To consider the effect of the architecture on the micro-
structure and behavior of polymers, we further investigated
the partitioning coefficient of polymers of different architec-
tures in a slit of H=11�. The partitioning coefficient de-
scribes the division of the polymer chain in the slit and bulk
phases, and is generally defined as Kc=�av /�b, where �av
= �1 /H�
0

H�s�z�dz is the average segmental density of poly-
mer chains in the slit. Figures 5�a� and 5�b� show the parti-
tioning coefficients of 10-mers and 22-mers with different
architectures in the slit of H=11�, respectively. In Fig. 5�a�,
we also compare our calculation results for 4-mers in a slit of
H=9� to the MC data in the same conditions from Yethiraj
and Hall �31�. It is found that our predictions agree well
quantitatively with the MC data. The difference in the pack-
ing fractions of polymer chains in the slit and the bulk phases
is due to the depletion effect, because the walls of the slit do
not have any attraction for the segments. As a result, in the
range of packing fractions from 0 to 0.25, the average den-
sity of polymer chains in the slit is always smaller than the
bulk density, not only for the 10-mers but also for the 22-
mers. However, the different architectures exhibit different
behaviors in the partitioning coefficient, especially for the
case of 22-mers as shown in Fig. 5�b�. Interestingly, the par-
titioning coefficients of branched, star, and G3 dendritic
polymers of 22-mers decrease to a minimum at extremely
low packing fractions, and then increase monotonically with
packing fraction. Moreover, the partitioning coefficients of
branched, star, and G3 dendritic polymers of 22-mers are
always larger than that of the linear polymer of 22-mers.
That is to say, it is more difficult for linear polymer of 22-
mers than for other architecture polymers to enter the slit,

FIG. 4. �a� Segmental density profiles of linear 4-mers in a slit
of 10� at �av=0.1,0.3 and 20-mers in a slit of 16� at �av=0.2. The
average packing fraction in the slit pore is calculated from �av

= �� /6��av�3= �� /6��3�1 /H�
0
H�s�z�dz. Circles represent simula-

tion data from Yethiraj and Hall �31,32�, and the solid line is from
this work. The results for �av=0.2 �0.3� are shifted upward by 0.2
�0.4�. �b� Segmental density profiles of star polymers with three
arms and five segments at each near a hard wall at �b

=0.1,0.2,0.3. Circles represent simulation data from Yethiraj and
Hall �30�, points denote DFT results from Malijevsky et al. �27�,
and solid line is the prediction from this work. The results for �b

=0.2 �0.3� are shifted upward by 0.2 �0.4�.

FIG. 5. Partitioning coefficients of hard-sphere chains of �a�
10-mers and �b� 22-mers in a slit of width H=11�. �a� Open circles
are simulation results of 4-mers in a slit of width H=9� from
Yethiraj and Hall �31� The dashed line is the predictions in this
work. The star polymer is comprised of three arms with two seg-
ments and one arm with three segments. The branched polymer is
comprised of a backbone with four segments and two side chains
with three segments in each. The G2 dendrimer is shown in Fig.
1�c�, but with only two generations �ten segments�. �b� Star polymer
is comprised of three arms with five segments and one arm with six
segments. The branched polymer is comprised of a backbone with
seven segments and five side chains with three segments in each.
The G3 dendrimer is shown in Fig. 1�c�.
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which may be because the linear polymer possesses a long-
chain architecture while the star, branched, and dendritic
polymers possess spherelike architecture.

To further explore the practical application of the pro-
posed algorithm, we also investigate the self-assembly of
diblock copolymers. The diblock copolymer comprises a
simple linear head �represented as A� and a tail with complex
architecture �represented as B�, such as linear, star, branched,
and dendritic structures. The former represents the hydro-
philic segments, and the latter represents the hydrophobic
segments. A schematic diagram is shown in Fig. 6. The in-
termolecular pair potential of segments is represented by a
square well potential, given by

�ij�r� = �� , r 
 � ,

�ij , � � r � �� ,

0, r � �� ,
� �9�

where i , j=A or B, r is the distance between two segments,
�� is the square well width, and �ij is the energy parameter.
In this work, the attractive width is fixed at �=1.2. The pair
interaction between like segments �AA or BB� is always at-
tractive and that between unlike segments is always repul-
sive. The unlike-pair interaction is fixed at �AB=0.5kBT. In
order to mimic the hydrophobic effect, we assume that the
attraction between BB segments ��BB=−1.5kBT� is stronger
than that between AA segments ��AA=−0.5kBT�, where the
negative stands for attraction, kB is the Boltzmann constant,
and T is the absolute temperature.

Figure 7 shows the average packing fractions of diblock
copolymers in a slit of H=14�. All curves present an abrupt
jump. The first abrupt jump located at �b=0.021 �linear tail�,
0.031 �star tail�, 0.035 �branched tail�, and 0.041 �dendritic
tail�. These abrupt jumps correspond to the phase transition

from a disordered state to an ordered phase. The bulk pack-
ing fraction corresponding to the jump increases with the
complexity of the molecular architecture. A complex archi-
tecture elevates the driving force of molecular self-assembly
because it loses more configurational entropy than a simple
architecture. Thus, the copolymers with tails with complex
architecture need a higher bulk packing fraction as a driving
force on molecular self-assembly. Interestingly, the second
jump occurs at �b=0.053 for the copolymers with star tails.
To get further insight into the microscopic behavior of co-
polymers before and after the phase transition, we present the
local density profiles of A and B segments at different bulk
packing fractions in Figs. 8 and 9. Since the curve corre-
sponding to the star tail exhibits two abrupt jumps, the local

FIG. 6. �Color online� Schematic diagrams of diblock copoly-
mers of 22-mers with �a� linear, �b� star, �c� branched, and �d�
dendritic tails. The hydrophilic head �denoted by A� is comprised of
seven segments, and the hydrophobic tail �denoted by B� is com-
prises of 15 segments.

FIG. 7. �Color online� Average packing fraction of diblock co-
polymers in a slit of H=14�.

FIG. 8. �Color online� Segmental density profiles �red lines for
A segment and blue lines for B segment� of diblock copolymers
with �a� linear and �b� star tails in a slit of width H=14�. The bulk
packing fractions are �b= �a1� 0.020, �a2� 0.021, �b1� 0.030, �b2�
0.031, and �b3� 0.053.
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structures of the copolymers at three bulk packing fractions
are presented in Fig. 8. For the copolymer with linear tail
�see Fig. 8�a��, the density profile at �b=0.020 shows a dis-
ordered state of the confined diblock copolymer, while it
exhibits an ABA trilayer film structure at �b=0.021. Interest-
ingly, for the copolymer with star tail, besides the phase tran-
sition from a disordered state to the trilayer film structure,
the copolymer also presents a structural evolution from the
ABA trilayer film structure to an ABABA five-layer film
structure. The structure evolution just happens at the second
jump, i.e., bulk packing faction �b=0.053. That is to say, the
structure evolution probably leads to the second abrupt jump
in the curve corresponding to the star tail in Fig. 7. In par-
ticular, Fig. 9 shows that copolymers with branched and den-
dritic tails self-assembled into the five-layer film structure
directly, without the existence of a trilayer structure, which
implies that the trilayer film structure is not stable in the case
studied. As discussed above, the copolymers with complex
architecture tails possess spherelike structures, with a smaller
radius of gyration than that of a simple linear architecture.
The resulting thickness of the periodicity of the self-
assembled lamellae is also smaller than that of the linear
polymer. Thus, the copolymers with complex architectures
self-assemble into a five-layer structure, while the linear co-
polymer self-assembles into a trilayer structure. More or-
dered layers would be assembled, if the width of the slit was
large enough �26�.

IV. CONCLUSIONS

In summary, by introducing a tree-type representation for
polymers, we proposed a universal version of density-
functional theory for inhomogeneous polymers with complex
architecture. The DFT version is applicable to polymers of
different architectures, including linear, star, branched, and
dendritic structures. Though these formulations were derived
in the case of a slit, our algorithm calculating the complex
chain connectivity is suitable for the bulk or other confined
phases. The algorithm should extend greatly the investiga-
tions of physical properties of polymers with complex archi-
tectures.

A good agreement of the calculation results by our ap-
proach and the available MC data confirms the validity of the
algorithm. By using the proposed approach, we calculated
the partitioning coefficients of polymers of different architec-
tures in a slit, and found that the partitioning coefficients of
branched, star, and G3 dendritic polymers of 22-mers de-
crease to a minimum at extremely low packing fraction, and
then increase monotonically with packing fraction. More-
over, based on the partitioning coefficients, it is found that it
is more difficult for the linear polymer of 22-mers to enter
the slit than for the branched, star, and dendritic polymers.

In addition, we also investigated the self-assembly of
diblock copolymers with different tails in the slit. It is found
that the linear copolymer self-assembled into a trilayer film
structure, while the copolymers with branched and dendritic
tails self-assembled into a five-layer film structure. Interest-
ingly, the copolymer with star tail self-assembled into a
trilayer film structure first, and the trilayer film structure
evolved into a five-layer film structure with increase of the
bulk packing fraction. Moreover, it is found that the bulk
packing fractions, corresponding to the phase transition from
a disordered state to an ordered state, increase with the com-
plexity of the tail architecture, because complex architecture,
say, a dendrimer, elevates the driving force of molecular self-
assembly, and the copolymers with tails with complex archi-
tecture lose more configurational entropy than a simple lin-
ear copolymer.
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FIG. 9. �Color online� Segmental density profiles �red lines for
A segment and blue lines for B segment� of diblock copolymers
with �c� branched and �d� dendritic tails in a slit of width H=14�.
The bulk packing fractions are �b= �c1� 0.035, �c2� 0.036, �d1�
0.041, and �d2� 0.042.
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